DIFERENCIA EN LA DUREZA DE RESINAS UTILIZADAS CONVENCIONALMENTE AL POLIMERIZARSE CON DIFERENTES TIPOS DE LUZ

DIFFERENCE IN HARDNESS OF COMPOSITES POLIMERIZED WITH DIFFERNT TYPES OF LIGHTS

Rafael Mauricio Naranjo-Pizano ¹, José Fernando Lince-Jaramillo ², Juliana Vivas-Idarraga,
Daniel Ruiz-Ceballos², Patricia Ortiz-Pérez ³

- 1. Protesista Periodontal, Docente Universidad CES. Email: maonaranjop@yahoo.com
- 2. Rehabilitador Oral Universidad CES. Email: joseflince@gmail.com, julyvivas@hotmail.com
- 3. Rehabilitador Oral Universidad CES, Magister en Epidemiología. Práctica Privada. Email: portiz@odontologica.com.co

Resumen

Introducción: Al utilizar resinas directas es importante conocer las características específicas de las mismas y las lámparas de fotocurado empleadas. Objetivo: Obtener evidencia científica para la selección de la resina, el tipo de lámpara y la técnica operatoria más adecuada para lograr un resultado clínico predecible. Materiales y métodos: Se evaluaron 24 grupos (10 por grupo), fotopolimerizadas con 3 tipos de lámparas: (Optilux® 501 - halógena a máxima potencia), (Optilux® 501 - halógena con rampa) y (Bluephase® - LED); y 4 tipos de resinas: Filtek® Supreme XT, Filtek® Z350, Tetric®N Ceram, y Esthet® X; empleando 2 técnicas de obturación: incremental y en bloque. Se evaluó la dureza a la penetración en Vickers en la parte superficial y profunda de cada muestra. Resultados: Filtek® Supreme XT presentó mayor dureza, seguida por Filtek® Z350, Esthet® X y Tetric® N Ceram. La dureza fue dependiente de la lámpara, siendo mayores los valores con Optilux® 501 con Rampa, seguida por Optilux® 501 a máxima potencia y finalmente LED Bluephase®. Se obtuvo mayor dureza con la técnica incremental en comparación con la técnica en bloque y en la zona superficial comparada con la zona profunda. Conclusion: se obtuvo mayor dureza con la resina Filtek® Supreme XT, fotocurada con la lámpara Optilux® 501 en rampa empleando la técnica de obturación incremental.

Palabras clave: Filtek® Supreme XT, Z350, Tetric® N Ceram, Esthet® X, fotocurado, Vickers.

Summary

Introduction: When using direct composites is important to take into account the specific characteristics of the material and the instruments like the curing lamp used to built any kind of restoration with composite. Objective: Create scientific evidence so professionals can choose the type of lamp, composite, and the needed technique to provide a better clinical result. Materials and methods: 10 samples were made in 24 groups, which evaluated 3 types of lamps: (Optilux® 501 - halogen at full power), (Optilux® 501 - halogen ramp) and (Bluephase® - LED), with 4 types of resins: Filtek® Supreme XT, Filtek® Z350, Tetric® N Ceram and Esthet ®X, and 2 placement techniques: incremental and block. The Vickers hardness by penetration at the surface and deep of each sample was evaluated. The results were analyzed both bi-and multivariate. Results: Filtek® Supreme XT showed the highest hardness, followed by Filtek® Z350, Tetric® N Ceram and

Esthet® X. The hardness was dependent on the lamp; the values were higher with Optilux® 501 with ramp, followed by Optilux® 501 at full power and finally LED Bluephase®. Better results were obtained using the technique of incremental placement compared with the block one, and these were higher in the surface region compared to deep region. Conclusion: The highest hardness was obtained with resin Filtek® Supreme XT, using the lamp Optilux® 501 with ramp and positioned with an incremental technique.

Keywords: Filtek Supreme XT, Z350, Tetric Ceram N, Esthet X, curing, Vickers.

Introducción

Hacia 1963 Bowen introduce el bis-GMA, modificando las resinas acrílicas usadas desde 1870, mejorando su uso en la práctica odontológica como material de restauración definitivo(1).

Para polimerizar una resina compuesta es necesario activar sus iniciadores (canforquinona, fenilpropanodiona (PPD) y lucerín), de manera química o física, para lo cual se necesita una fuente de luz capaz de activarlos(2).

Pocas lamparas estimulan completamente estos fotoiniciadores, las halógenas cubren completamente el espectro de la canforquinona y parcialmente el de PPD y del lucerín. Las lámparas de plasma de onda baja cubren parcialmente el espectro de lucerín , PPD y canforquinona, y las lámparas de plasma de alta intensidad cubren parte del espectro de la canforquinona y PPD, pero no cubre el espectro del lucerín(3). Es importante entonces conocer el iniciador que contenga la resina para seleccionar el tipo de lámpara, y obtener un mejor resultado. Durante a polimerización se forman radicales libres, que rompen los enlaces dobles de carbono de los monómeros permitiendo propagar la reacción hasta formar polímeros unidos por enlaces covalentes simples(1)(4). La obturación debe realizarse con agregados de resina no mayores a 2 mm(5) para garantizar que sea adecuado y homogéneo; por esta razón, el tiempo para su elaboración clínica es mayor.

La resina se contrae hacia la masa, generando el factor C de contracción, especialmente cuando su ubicación se hace en bloque en cavidades clase I (6)(7) Este factor relaciona las superficies dentarias adheridas con las no adheridas. Hay mayor factor C a mayor cantidad de superficies en contacto con una capa de la resina(8), ya que no se libera estrés por deformación plástica al polimerizar, alterando la unión resina/diente, creando filtración marginal(9). la técnica incremental reduce dicho factor, colocando capas sobre menor cantidad de paredes(9); tratando de controlar la contracción del material que oscila alrededor de 2 a 6%(8).

actualmente hay un gran desarrollo de fuentes de luz rápidas y eficaces que actúan conjuntamente con el desarrollo en tecnologías de polímeros dentales(10). Es entonces importante conocer las características del equipo (fuente de luz) y las propiedades logradas con las resinas, para que con criterio basado en evidencia científica, el odontólogo pueda ofrecerle al paciente mejores resultados(10).

El propósito de esta investigación fue determinar cuál de las resinas, lámparas y técnicas de posicionamiento evaluadas, se comportan mejor en cuanto a dureza superficial y profunda.

Materiales y métodos

Se realizó un estudio experimental invitro aleatorizado simple ciego; se formaron 24 grupos de resinas (10 muestras cada uno) (filtek supreme XT 3M, filtek Z350 3M, Tetric N ceram Ivoclar, Esthet X Densply) (Tabla 1), polimerizadas por tres diferentes fuentes de luz (Tabla 2), con técnica incremental y en bloque para un total de 240 especímenes. (Figura 1).

Con cada tipo de lámpara se polimerizaron 8 grupos, 2 de cada tipo de resina, uno con técnica incremental y otro en bloque (Figura 1).

Tabla 1. Resinas Utilizadas

Material	Tipo de resina	Tipo de relleno	Matriz de resina	% de relleno por peso (vol.)	Tamaño de partícula	Iniciador
Esthet X, Dentsply	Microhíbrida	Bario, alúmina, fluoroborosilicato vidrio con dióxido de silicona de tamaño nano	BIS-GMA , bisfenol-etoxilato dimetacrilato, TEGDMA	77 (60)	0.85. 0.9 m	Canforquinona
Filtek Supreme XT, 3M	Nanohíbrida	Nanocluster, SiO2 Nanocluster de ZrO2/SiO2	Bis-PMA, UDMA Bis-GMA	82 (60)	Nanocluster: 0.6. 1.4 m Nanorelleno 20 - 60 nm	Canforquinona
Filtek Z350, 3M	Nanohíbrida	Nanorelleno y Nanocluster ZrO2/SiO2 SiO2	Bis-PMA, UDMA	82 (60)	Nanocluster 0.6., 1.4 m Nanorrelleno 20nm	Canforquinona
Tetric N Ceram, Ivoclar Vivadent	Nanohíbrida	Vidrio de bario, sílice,dióxido, trifluor de iterbio, Barioaluminofluorosili cato de vidrio	Bis-GMA, TEGDMA	79 (60)	0.7 m	Canforquinona

Bis-GMA: bisfenol-A-glicidil metacrilato; Bis-PMA: bisfenol-A-polietileno glicol dieter dimetacrilato; DUDMA: diuretano dimetacrilato; TEGDMA: trietileno glicol dimetacrilato

Tabla 2. Lámparas Utilizadas

Tipo de lámpara	Intensidad	Longitud de onda	Casa comercial
	mW/cm ²	(nanómetros)	
Optilux 501	100 . 1000 (rampa)	400-515	Demetron, Kerr
	850 - 1000 (potencia max.)		
LED Bluephase	1200 mW/cm ²	430-490 (380-515)	Ivoclar Vivadent

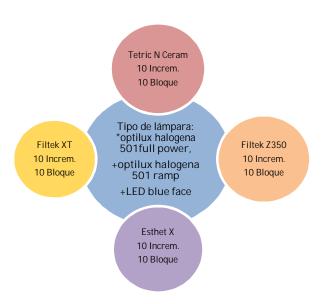


Figura 1. Distribución de muestras

Elaboración de las muestras

Se utilizaron placas metálicas para elaborar las muestras con perforaciones de 2 mm de grosor, 8 mm de diámetro en la superficie y 7 mm en el fondo, calibrados previamente, para asegurar un grosor uniforme.

Cada resina fue llevada al molde con un FP3 de teflón, usando una placa de vidrio (portaobjetos 3M®) de 0.5 mm de grosor en la parte superior y una loseta de vidrio en la parte inferior de los moldes(11-13), para obtener superficies lisas y libres de burbujas y estandarizar una distancia de 0.5 mm entre la lámpara y la resina.

Técnicas de obturación: La obturación de los moldes se realizó por un operador previamente estandarizado.

Bloque: la resina se ubicó en un solo incremento, se colocó la placa de vidrio para eliminar excesos y se polimerizó 20 segundos (recomendado por el fabricante)(1)(14)

Incremental: se colocaron 4 incrementos de un cuarto de circunferencia del molde y polimerizado por 20 segundos cada incremento (Figura 2).

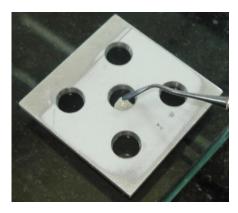


Figura 2. Placa para elaboración de muestras y grafico de agregados técnica incremental

Las lámparas se calibraron con un radiómetro incorporado en la lámpara Optilux 501(Kerr®), antes de la polimerización y después de polimerizar 40 incrementos, para garantizar adecuada intensidad de luz durante la polimerización. Las lámparas evaluadas fueron: halógena convencional (Optilux® 501), halógena exponencial (Optiluz® 501) y lámpara LED (Bluephase®) manteniendo una distancia de 0.5mm entre la lámpara y la resina como se describió previamente.

Almacenamiento de las muestras

Posterior a la polimerización, se retiraron las muestras del molde y se almacenaron en recipientes oscuros a temperatura ambiente hasta el momento de la prueba , embebidas en sustituto salivar (Salivar, Farpag®) con un pH de 5.5 7,0, (al menos 24 horas) este es una solución acuosa estabilizada con balance de electrolitos, semejante en aspecto, acción y composición a la saliva natural(15)(16)(17).

Dureza a la penetración

Se retiraron las muestras del almacenamiento, se pulieron ambas superficies(superior e inferior) usando discos shofu (super-snap :grano L 506, 528, 501 y 503) buscando eliminar la capa inhibida

de oxígeno y obtener una superficie lisa(13)(18); se evaluó la dureza a la penetración Vickers (NDV) de cada muestra con un microdurómetro (Instrom Wilson 401-402 MVD), aplicando una carga de 100gr. en la parte superior (superficial) e inferior (profunda). Con diagonal generada, se calculó NDV de cada muestra.

Análisis estadístico:

Los resultados se tabularon en el formulario para recolección de la información. Usando el software Stata 10 se analizaron las variables, teniendo un nivel de significancia del 95% (p < 0.05). Se evaluó la dureza superficial y profunda para cada resina bajo cada fuente de luz y cada técnica de obturación mediante la prueba de ANOVA de una sola vía; adicionalmente se efectuó un análisis de ANOVA multifactorial (resina, fuente y técnica) para comparar la dureza tanto superficial como profunda.

Resultados

Filtek® Supreme XT presentó mayor dureza (promedio NDV :83,4 zona superficial y 67,3 zona profunda), seguida por Filtek® Z350 (79,3 superficial y 69,4 zona profunda), Esthet® X (58,2 superficial y 48,3 zona profunda), el menor valor obtenido fue Tetric® N Ceram (51,8 zona superficial y 41,9 zona profunda) ,con diferencias estadísticamente significativas entre todos los grupos excepto Filtek® Supreme XT y Filtek® Z350.

Tabla 3. Dureza en Vickers superficial y profunda

Lugar	Resina Evaluada	N	$\overline{X} \pm D.E.$	IC 9	Valor P	
evaluado	Nesina Evaluada		$A \perp D.E.$	Lim. Inf.	Lim. Sup.	Anova
	Esteth_X	60	58,2±10,0 ^a	55,6	60,8	
	Filtek_Sup_XT	60	83,4±7,9 ^b	81,3	85,4	0.000
SUPERFICIAL	Filtek_Z350	60	79,3±10,7 ^b	76,5	82,0	0.000
	TetricN-Ceram	60	51,8±10,8 ^c	49,0	54,6	
	Total	240	68,2±16,7	66,0	70,3	
	Esteth_X	60	48,3±11,4 ^a	45,4	51,3	
	Filtek_Sup_XT	60	67,3±14,2 ^b	63,6	71,0	0.000
PROFUNDA	Filtek_Z350	60	69,4±9,6 ^b	67,0	71,9	0.000
	TetricN-Ceram	60	41,9±12,5 ^c	38,7	45,1	
	Total	240	56,7±16,9	54,6	58,9	

Letras iguales en superíndice indican no diferencias estadísticamente significativas entre las resinas, y letras diferentes muestran diferencias estadísticamente significativas entre estas.

La dureza de las resinas fue afectada por el tipo de lámpara usada siendo mayores los valores con Optilux® 501 exponencial (promedio NDV:72,3 superficial y 59,4 zona profunda); seguida por la Optilux® 501 con potencia máxima (promedio NDV: 68,8 zona superficial, y 56,9 zona profunda); los menores valores fueron con lámpara LED Bluephase® (promedio NDV: 63,5 zona superficial, y 54,0 zona profunda); mostrando diferencias estadísticamente significativas en la parte superficial (Tabla 4).

La dureza obtenida según la técnica de obturación fue mayor para la incremental (promedio NDV: 69,5 zona superficial y 63,3 zona profunda); en comparación con la de bloque, (promedio NDV: 66,9 zona superficial y 50,2 zona profunda); mostrando diferencias estadísticamente significativas en la zona profunda (Tabla 5).

Tabla 4. Dureza en Vickers superficial y profunda según lámpara usada

Lugar evaluado	Lámpara	N	$\overline{X} \pm D.E.$	IC 9	Valor P	
zagar ovarada			Lim. Inf.	Lim. Sup.	Anova	
	LED	81	63,5±16,3ª	59,9	67,1	
CLIDEDEICIAL	Optimluz_Convenc	80	68,8±16,3 ab	65,1	72,4	0.003
SUPERFICIAL	Optiluz_Rampa	79	72,3±16,5 ^b	68,6	76,0	
	Total	240	68,2±16,7	66,0	70,3	
	LED	81	54,0±15,5 a	50,6	57,4	
PROFUNDA	Optimluz_Convenc	80	56,9±17,1 ^a	53,1	60,7	0.132
PROFUNDA	Optiluz_Rampa	79	59,4±17,8 ^a	55,4	63,4	
	Total	240	56,7±16,9	54,6	58,9	

Letras iguales en superíndice indican no diferencias estadísticamente significativas entre tipos de resinas, y letras diferentes muestran diferencias estadísticamente significativas entre tipos de resinas, y letras estadísticamente significativas entre tipos de resinas, y letras diferencias estadísticamente significativas entre tipos de resinas, y letras estadísticamente esta

Tabla 5. Dureza Vickers superficial y profunda según técnica de obturación

Lugar evaluado	Técnica de posicionamiento			IC 9	Valor P	
			$X \pm D.E.$	Lim. Inf	Lim. Sup	Anova
	Bloque	120	66,9±15,4	64,1	69,7	
SUPERFICIAL	Incremental	120	69,5±17,9	66,2	72,7	0.233
	Total	240	68,2±16,7	66,0	70,3	
	Bloque	120	50,2±14,6	47,5	52,8	
PROFUNDA	Incremental	120	63,3±16,5	60,4	66,3	0.000
	Total	240	56,7±16,9	54,6	58,9	

El análisis simultáneo de la dureza superficial y profunda considerando las tres variables se muestran en las tablas 6 y 7 respectivamente.

En la dureza superficial con ANOVA multifactorial se encontraron diferencias estadísticamente significativas en el tipo de resina, tipo lámpara y técnica utilizada así como en las interacciones de las tres, exceptuando resina con técnica (p = 0.223). En la tabla 6 se observa el mas alto promedio (90,94) obtenido en el grupo 5 (Filtek® Supreme XT + Optilux® 501 Rampa + incremental) seguido por el grupo 6 (filtek supreme+bloque+rampa) y 15(filtek Z350+increm+opti501) y el valor mas bajo lo exhibió el grupo19 (Tetric® N Ceram + LED Bluephase® + incremental) corroborando los resultados del primer análisis; en cuanto al análisis de dureza profunda con la prueba ANOVA multifactorial se encontraron diferencias estadísticamente significativas en el tipo de resina, tipo lámpara y técnica utilizada así como en las interacciones de las mismas (p < 0.05). En la tabla 7 el mejor promedio obtenido se observa en el grupo 5 (Filtek® Supreme XT + Optilux® 501 Rampa + increm) seguido por el grupo 15 y 7, ; el valor mas bajo lo exhibió el grupo 12 (Tetric® N Ceram + Optilux® 501 Rampa + bloque)

Tabla 6. Análisis simultaneo de la dureza superficial

Dureza Superficial

				IC S	95%	Valor	Valor
Grupo / Resina / Técnica / Lámpara /	N	Media	SD	Lim. Inf	Lim. Sup.	Min.	Мах.
#1 Esthet X HD- Incr- Opt 501 Rampa	10	69,300	13,971	59,306	79,294	50,9	87,2
#2 Esthet X HD- Bloq- Opt 501 Rampa	10	55,830	4,961	52,281	59,379	46,8	61,0
#3 Tetric N Ceram - Incr- Opt 501 Rampa	10	59,840	10,738	52,158	67,522	44,4	76,3
#4 Tetric N Ceram - Bloq- Opt 501 Rampa	10	55,210	15,173	44,356	66,064	28,8	90,8
#5 Filtek SupremeXT- Incr- Opt 501 Rampa	10	90,940	5,963	86,674	95,206	81,0	99,6
#6 Filtek Supreme XT- Bloq- Opt 501 Rampa	10	87,410	7,197	82,262	92,558	79,3	99,3
#7 Filtek Z 350- Incr- Opt 501 Rampa	10	84,830	4,933	81,301	88,359	73,9	89,4
#8 Filtek Z 350- Bloq- Opt 501 Rampa	10	76,120	6,590	71,406	80,834	66,1	88,3
#9 Esthet X HD- Incr- Opt 501	10	48,520	6,389	43,949	53,091	38,0	58,4
#10 Esthet X HD- Bloq- Opt 501	10	60,390	6,900	55,454	65,326	50,3	69,4
#11 Tetric N Ceram - Incr- Opt 501	10	59,930	7,032	51,899	61,961	44,9	67,3
#12 Tetric N Ceram - Bloq- Opt 501	10	50,940	7,753	45,394	56,486	32,8	59,6
#13 Filtek Supreme XT- Incr- Opt 501	10	82,210	6,035	79,893	88,527	74,2	93,3
#14 Filtek Supreme XT- Bloq- Opt 501 Rampa	10	81,420	2,825	79,399	83,441	77,7	86,0
#15 Filtek Z 350- Incr- Opt 501	10	85,360	7,774	79,799	90,921	70,5	96,2
#16 Filtek Z 350- Bloq- Opt 501	10	82,400	6,413	77,813	86,987	71,7	89,9
#17 Esthet X HD- Incr- LED	10	60,510	7,522	55,129	65,891	42,3	69,5
#18 Esthet X HD- Bloq- LED	10	54,600	4,354	51,485	57,715	50,5	64,4
#19 Tetric N Ceram - Incr- LED	10	41,350	3,210	39,053	43,647	36,2	47,3
#20 Tetric N Ceram - Bloq- LED	10	46,680	6,136	42,290	51,070	37,1	54,7
#21 Filtek Supreme XT- Incr- LED	10	84,130	3,086	81,923	86,337	79,3	88,5
#22 Filtek Supreme XT- Bloq- LED	10	72,190	6,609	67,462	76,918	65,7	85,2
#23 Filtek Z 350- Incr- LED	10	67,520	17,980	54,658	80,382	23,3	85,7
#24 Filtek Z 350- Bloq- LED	10	79,360	2,909	77,279	81,441	75,8	85,8
Total	240	68,166	16,689	66,044	70,288	23,3	99,6

Tabla 7. Análisis simultaneo de la dureza profunda

Dureza Profunda

				IC 9	95%	Valor	Valor
Grupo / Resina / Técnica / Lámpara /	N	Media	SD	Lim. Inf	Lim. Sup.	Min.	Мах.
#1 Esthet X HD- Incr- Opt 501 Rampa	10	61,460	11,121	53,504	69,416	43,2	82,6
#2 Esthet X HD- Bloq- Opt 501 Rampa	10	42,360	12,908	33,126	51,594	30,2	76,2
#3 Tetric N Ceram - Incr- Opt 501 Rampa	10	57,040	6,741	52,218	61,862	48,0	67,7
#4 Tetric N Ceram - Bloq- Opt 501 Rampa	10	38,700	9,194	32,123	45,277	28,4	59,8
#5 Filtek SupremeXT- Incr- Opt 501 Rampa	10	84,940	12,312	76,132	93,748	57,8	99,1
#6 Filtek Supreme XT- Bloq- Opt 501 Rampa	10	51,070	10,038	43,889	58,251	31,6	61,9
#7 Filtek Z 350- Incr- Opt 501 Rampa	10	78,050	6,470	73,422	82,678	70,9	89,2
#8 Filtek Z 350- Bloq- Opt 501 Rampa	10	61,700	5,781	57,564	65,836	48,9	67,9
#9 Esthet X HD- Incr- Opt 501	10	41,280	11,304	33,193	49,367	23,0	61,5
#10 Esthet X HD- Bloq- Opt 501	10	44,540	5,502	40,604	48,476	35,4	53,9
#11 Tetric N Ceram - Incr- Opt 501	10	54,980	5,093	51,337	58,623	47,5	63,1
#12 Tetric N Ceram - Bloq- Opt 501	10	34,150	6,917	29,202	30,098	19,5	40,9
#13 Filtek Supreme XT- Incr- Opt 501	10	75,380	6,290	70,881	79,879	68,3	86,9
#14 Filtek Supreme XT- Bloq- Opt 501 Rampa	10	59,690	10,504	52,176	67,204	44,3	77,6
#15 Filtek Z 350- Incr- Opt 501	10	78,650	6,233	74,191	83,109	67,3	88,9
#16 Filtek Z 350- Bloq- Opt 501	10	66,530	10,670	58,897	74,163	49,0	89,5
#17 Esthet X HD- Incr- LED	10	54,740	5,568	50,257	58,723	43,2	62,4
#18 Esthet X HD- Bloq- LED	10	45,600	4,447	42,419	48,781	38,4	52,2
#19 Tetric N Ceram - Incr- LED	10	37,090	8,793	30,800	43,380	12,9	44,1
#20 Tetric N Ceram - Bloq- LED	10	29,340	4,498	26,122	32,558	23,8	33,6
#21 Filtek Supreme XT- Incr- LED	10	72,260	4,895	68,758	75,762	61,7	78,4
#22 Filtek Supreme XT- Bloq- LED	10	60,560	7,048	55,518	65,602	47,3	71,5
#23 Filtek Z 350- Incr- LED	10	64,090	9,077	57,597	70,583	45,9	75,4
#24 Filtek Z 350- Blog- LED	10	67,630	3,300	65,269	69,991	64,1	74,0
Total	240	56,743	16,899	54,594	58,892	12,9	99,1

Discusión

Se usó la tonalidad de resina A1 para, permitir una adecuada penetración de la luz y lograr una polimerización más rápida (19). Se mantuvo una distancia constante de 0,5 mm entre la luz y la resina para no generar diferente coeficiente de conversión de polimerización (CCP) y NDV(20); cuando la distancia desde la luz es modificada se afectan las propiedades mecánicas del material, aumenta el monómero residual y puede irritarse el complejo dentinopulpar comprometiendo la longevidad de la restauración(21,22).

Un mayor CCP genera mayor dureza por el mayor número de enlaces formados (23); esta dureza superficial depende también de la matriz y del porcentaje y tipo de relleno (24). En esta investigación se asoció la dureza obtenida, con los rellenos de las resinas evaluadas, donde las resinas Filtek® Supreme XT y Filtek® Z350 presentaron mayores valores de dureza; estas resinas tienen zirconio como relleno (82% por peso) este material brinda mayor resistencia a la compresión, a la tensión y módulo de elasticidad (25). Esthet® X que presentó valores de dureza intermedia, usa como relleno alúmina (77% del peso), este relleno le otorga al material una optimización en sus propiedades mecánicas y de superficie disminuyendo porosidad y mejorando el pulido(26); Tetric® N Ceram contiene como relleno partículas de trifluoruro de iterbio y barioaluminofluorosilicato (79% por peso), esta ofreció menores valores de dureza; esto puede verse asociado particularmente con el trifluoruro de iterbio que es blando maleable y dúctil que puede aumentar su fluencia y dispersión de cristales en la matriz(25). Así, el tipo y porcentaje de relleno influye en las propiedades mecánicas y en el comportamiento clínico como ha sido confirmado por otros autores (27-30).

Aproximadamente 75% del CCP ocurre durante los primeros 10 minutos; el 19 a 24% restante se presenta a las 24 horas(31). Primero se forman las cadenas polimericas y luego los enlaces cruzados. Así, otros factores influyentes en la dureza de la resina es la densidad de enlaces cruzados establecidos, y la red tridimensional formada al polimerizar (32).

Los mayor dureza con la obturación incremental encontrada en este estudio demuestra la importancia de dicha técnica, confirmando los resultados de Suh y Wang (33), demostrando mayor CCP con diferencias estadísticamente significativas, al compararlos con CCP de la técnica en bloque. Esto puede asociarse a mayor exposición a la luz, (4 incrementos), en comparación con un solo incremento (34,35).

Al evaluar el comportamiento de las resinas con diferentes fuentes de luz (LED y halógenas), muchos estudios no reportan diferencias estadísticamente significativas (36-40); algunos reportan mejores resultados con unidades LED (37); en el presente estudio se encontró mayor dureza en las resinas polimerizadas con lámparas halógenas tanto superficial como profunda, con polimerización en rampa y técnica incremental; lo cual confirma los resultados obtenidos por otros investigadores (35,41-46). Esto puede asociarse al grado en el que una determinada longitud de onda puede activar adecuadamente el fotoiniciador que contiene cada resina.

Algunos estudios evaluaron la relación entre el CCP y la solubilidad de las resinas, esta, depende de la cantidad de monómeros residuales; durante el proceso de polimerización estos monómeros se encuentran atrapados entre las cadenas del polímero adsorbidos a la red circundante o en nanoporos siendo propensos a la lixiviación (47) la composición de los rellenos juega un papel fundamental ya que el porcentaje de enlaces alifáticos carbono carbono reaccionados de los monómeros es mayor en las resinas micro y nanohibridas que en las micro o nanorelleno haciendo a estos más solubles por la discrepancia en el factor de conversión; las partículas nano y micro no aglomeradas parecen generar una dispersión e impiden el paso y disminuyen la intensidad de la luz disminuyendo el grado de conversión(48); esto puede incrementar la solubilidad haciendo más propenso el material a la desunión cuando los agentes de acoplamiento del relleno son hidrolizados (48).

La contracción y el comportamiento mecánico son importantes en el desempeño clínico; algunas investigaciones han evaluado las partículas de relleno micro/nano como SiO2, Al2O3, ZrO, CaCO3, Mg(OH), que optimizan las propiedades. El tamaño y porcentaje de partícula influencian las propiedades mecánicas; en cuanto a la rigidez relativa (relación esfuerzo-tensión) parece haber un tamaño crítico de partícula por encima del cual no hay ningún efecto sobre dicha rigidez. Aunque si el tamaño de la partícula es inferior de este valor, su efecto puede ser mas significativo. La magnitud de este tamaño no puede ser determinada a priori ya que depende del tipo de partícula, la matriz y la adhesión entre ambos(49); Respecto al porcentaje de carga , el modulo elástico aumenta con el aumento de porcentaje de carga; la resistencia máxima a la fractura del polímero aumenta con el aumento del tamaño de la partícula ,el aumento de la carga el tipo de relleno y la interface adhesiva con la matriz (49).

Conclusiones

La resina Filtek® Supreme XT presentó mayor dureza, seguida por Filtek® Z350, Esthet® X .Tetric® N Ceram presento menor dureza.se encontraron diferencias estadísticamente significativas entre todos los grupos excepto entre Filtek® Supreme XT y Filtek® Z350.

La dureza según la técnica de obturación, fue mayor para las elaboradas con técnica incremental que con la técnica en bloque; y fue mayor en la zona superficial que en la zona profunda.

La dureza fue afectada por el tipo de lámpara (luz) usada siendo mayor Optilux® 501 exponencial, seguida por la Optilux® 501 con potencia máxima y los menores valores se obtuvieron con lámpara LED Bluephase®; tanto en la zona superficial como en la profunda, mostrando diferencias estadísticamente significativas solo en la parte superficial.

Agradecimientos

A la Universidad CES, especialmente a la división de Investigación por su apoyo con el personal y recursos económicos durante el desarrollo de este proyecto.

A las casas comerciales por apoyarnos con sus productos: 3M, Ivoclar Vivadent, Dentsply y Farpag.

Al laboratorio de materiales de la Universidad EAFIT donde se realizaron todas las mediciones respectivas.

Al Dr. Luis Gonzalo Álvarez por su ayuda en el análisis estadístico de los resultados.

Bibliografía

- 1. Guzmán H. Resinas compuestas. Biomater Odontológicos uso clínico. 2006;Cuarta ed(Bogotá: Ecoe):175 208.
- 2. Feilzer AJ, De Gee AJ, Davidson CL. Setting stress in composite resin in relation to configuration of the restoration. J Dent Res. 1987;66(11):1636–1639.
- 3. Ilie N, Hickel R. Can CQ be completely replaced by alternative initiators in dental adhesives? Dent Mater J. 2008;27(2):221 228.
- 4. Phillips. Ciencia de los materiales dentales. Anusavice Elsevier. 2004. p. 34.

- 5. Tiba A, Zeller GG, Estrich CG, Hong A. A laboratory evaluation of bulk-fill versus traditional multi-increment-fill resin-based composites. J Am Dent Assoc. 2013;144(10):1182 1183.
- 6. Manhart J, García-Godoy F, Hickel R. Direct posterior restorations: clinical results and new developments. Dent Clin North Am. 2002;46(2):303 339.
- 7. de Araújo CS, Schein MT, Zanchi CH, Rodrigues SA, Demarco FF. Composite resin microhardness: the influence of light curing method, composite shade, and depth of cure. J Contemp Dent Pract. 2008;9(4):43–50.
- 8. Giachetti L, Scaminaci Russo D, Bambi C, Grandini R. A review of polymerization shrinkage stress: current techniques for posterior direct resin restorations. J Contemp Dent Pract. 2006;7(4):79 88.
- 9. Carvalho RM, Pereira JC, Yoshiyama M, Pashley DH. A review of polymerization contraction: the influence of stress development versus stress relief. Oper Dent. 1996;21(1):17 24.
- 10. Leprince JG, Palin WM, Hadis MA, Devaux J, Leloup G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent Mater. 2013;29(2):139–156.
- 11. Ling L, Xu X, Choi G-Y, Billodeaux D, Guo G, Diwan RM. Novel F-releasing composite with improved mechanical properties. J Dent Res. 2009;88(1):83–88.
- 12. Yap AUJ, Saw TY, Cao T, Ng MML. Composite cure and pulp-cell cytotoxicity associated with LED curing lights. Oper Dent. 2004;29(1):92 99.
- Ruiz, J. M., Ceballos, L., Fuentes, M. V., Osorio, R., Toledano, M., & García-Godoy F.
 Propiedades mecánicas de resinas compuestas modificadas o no con poliácidos. Av
 Odontoestomatol. 2003;9(6):291 297.
- 14. Guzmán H. Unidades de fotocurado. Soc Colomb Oper Dent y Biomater. 2000; Vol 4(Bogotá):227 241.
- 15. Laboratorios Farpag Ltda. Salivar. 2009.
- 16. Ilie N, Hickel R. Macro-, micro- and nano-mechanical investigations on silorane and methacrylate-based composites. Dent Mater. 2009;25(6):810–819.
- 17. Zupancic R, Legat A, Funduk N. Tensile strength and corrosion resistance of brazed and

- laser-welded cobalt-chromium alloy joints. J Prosthet Dent. 2006;96(4):273 282.
- 18. Watanabe T, Miyazaki M, Moore BK. Influence of polishing instruments on the surface texture of resin composites. Quintessence Int. 2006;37(1):61 67.
- 19. Tanoue N, Koishi Y, Matsumura H, Atsuta M. Curing depth of different shades of a photo-activated prosthetic composite material. J Oral Rehabil. 2001;28(7):618–623.
- 20. Rode KM, Kawano Y, Turbino ML. Evaluation of curing light distance on resin composite microhardness and polymerization. Oper Dent. 2007;32(6):571 578.
- 21. Catelan A, de Araújo LSN, da Silveira BCM, Kawano Y, Ambrosano GMB, Marchi GM, et al. Impact of the distance of light curing on the degree of conversion and microhardness of a composite resin. Acta Odontol Scand. 2015;73(4):298–301.
- 22. Catelan A, Mainardi M do CAJ, Soares GP, de Lima AF, Ambrosano GMB, Lima DANL, et al. Effect of light curing protocol on degree of conversion of composites. Acta Odontol Scand. 2014;72(8):898–902.
- 23. Jafarzadeh T-S, Erfan M, Behroozibakhsh M, Fatemi M, Masaeli R, Rezaei Y, et al. Evaluation of Polymerization Efficacy in Composite Resins via FT-IR Spectroscopy and Vickers Microhardness Test. J Dent Res Dent Clin Dent Prospects. 2015;9(4):226–232.
- 24. Ferracane JL, Aday P, Matsumoto H, Marker VA. Relationship between shade and depth of cure for light-activated dental composite resins. Dent Mater. 1986;2(2):80–84.
- 25. Chapter 13; Composites R Resin-Based Composites. Phillips Sci Dent Mater. 2013;275 306.
- 26. Cramer NB, Stansbury JW, Bowman CN. Recent advances and developments in composite dental restorative materials. J Dent Res. 2011;90(4):402–416.
- 27. Min S-H, Ferracane J, Lee I-B. Effect of shrinkage strain, modulus, and instrument compliance on polymerization shrinkage stress of light-cured composites during the initial curing stage. Dent Mater. 2010;26(10):1024 1033.
- 28. Masouras K, Silikas N, Watts DC. Correlation of filler content and elastic properties of resin-composites. Dent Mater . 2008;24(7):932 939.
- 29. Leprince J, Palin WM, Mullier T, Devaux J, Vreven J, Leloup G. Investigating filler morphology and mechanical properties of new low-shrinkage resin composite types. J

- Oral Rehabil. 2010;37(5):364 376.
- Berger SB, Palialol ARM, Cavalli V, Giannini M. Characterization of water sorption, solubility and filler particles of light-cured composite resins. Braz Dent J. 2009;20(4):314 318.
- 31. Sabatini C. Comparative study of surface microhardness of methacrylate-based composite resins polymerized with light-emitting diodes and halogen. Eur J Dent. 2013;7(3):327 335.
- 32. E. M. Grado de conversión de los composites: Qué es, qué importancia tiene y qué factores influyen en él.. 2002; (Accessed diciembre/9, 2008.).
- 33. Suh BI, Wang Y. Determining the direction of shrinkage in dental composites by changes in surface contour for different bonding configurations. Am J Dent. 2001;14(2):109 113.
- Cadenaro M, Biasotto M, Scuor N, Breschi L, Davidson CL, Di Lenarda R. Assessment of polymerization contraction stress of three composite resins. Dent Mater. 2008;24(5):681
 685.
- 35. Nakfoor B, Yaman P, Dennison J, Herrero A. Effect of a light-emitting diode on composite polymerization shrinkage and hardness. J Esthet Restor Dent. 2005;17(2):110 116; discussion 117.
- 36. Yoon T-H, Lee Y-K, Lim B-S, Kim C-W. Degree of polymerization of resin composites by different light sources. J Oral Rehabil. 2002;29(12):1165 1173.
- 37. Mills RW, Jandt KD, Ashworth SH. Dental composite depth of cure with halogen and blue light emitting diode technology. Br Dent J. 1999;186(8):388 931.
- 38. Stahl F, Ashworth SH, Jandt KD, Mills RW. Light-emitting diode (LED) polymerisation of dental composites: flexural properties and polymerisation potential. Biomaterials. 2000;21(13):1379 1385.
- 39. Uhl A, Mills RW, Vowles RW, Jandt KD. Knoop hardness depth profiles and compressive strength of selected dental composites polymerized with halogen and LED light curing technologies. J Biomed Mater Res. 2002;63(6):729–738.
- 40. Shortall AC, Harrington E. Temperature rise during polymerization of light-activated

- resin composites. J Oral Rehabil. 1998;25(12):908 913.
- 41. Dunn WJ, Taloumis LJ. Polymerization of orthodontic resin cement with light-emitting diode curing units. Am J Orthod Dentofacial Orthop. 2002;122(3):236 241.
- 42. St-Georges AJ, Swift EJ, Thompson JY, Heymann HO. Curing light intensity effects on wear resistance of two resin composites. Oper Dent. 27(4):410 417.
- 43. Kurachi C, Tuboy AM, Magalhães D V, Bagnato VS. Hardness evaluation of a dental composite polymerized with experimental LED-based devices. Dent Mater. 2001;17(4):309 315.
- 44. Leonard DL, Charlton DG, Roberts HW, Cohen ME. Polymerization efficiency of LED curing lights. J Esthet Restor Dent [Internet]. 2002;14(5):286–295.
- 45. Vandewalle KS, Roberts HW, Miniotis N. Critical appraisal. Quartz-tungsten-halogen and light-emitting diode curing lights. J Esthet Restor Dent. 2006;18(3):161–167.
- 46. Halvorson RH, Erickson RL, Davidson CL. Polymerization efficiency of curing lamps: a universal energy conversion relationship predictive of conversion of resin-based composite. Oper Dent. 29(1):105–111.
- 47. Sideridou I, Tserki V, Papanastasiou G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials. 2003;24(4):655-665.
- 48. da Silva EM, Almeida GS, Poskus LT, Guimarães JGA. Relationship between the degree of conversion, solubility and salivary sorption of a hybrid and a nanofilled resin composite. J Appl Oral Sci. 16(2):161 166.
- 49. Fu, S. Y., Feng, X. Q., Lauke, B., & Mai YW. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate polymer composites. Compos Part B Eng. 2008;39(6):933 961.